
Program design in the UNIX environment

Rob Pike

Brian W. Kernighan

ABSTRACT

Much of the power of the UNIX operating system comes from a style of program

design that makes programs easy to use and, more important, easy to combine with other

programs. This style has been called the use of software tools, and depends more on how

the programs fit into the programming environment � how they can be used with other

programs � than on how they are designed internally. But as the system has become

commercially successful and has spread widely, this style has often been compromised, to

the detriment of all users. Old programs have become encrusted with dubious features.

Newer programs are not always written with attention to proper separation of function

and design for interconnection. This paper discusses the elements of program design,

showing by example good and bad design, and indicates some possible trends for the

future.

The UNIX operating system has become a great commercial success, and is likely to be the standard

operating system for microcomputers and some mainframes in the coming years.

There are good reasons for this popularity. One is portability: the operating system kernel and the

applications programs are written in the programming language C, and thus can be moved from one type of

computer to another with much less effort than would be involved in recreating them in the assembly lan

guage of each machine. Essentially the same operating system therefore runs on a wide variety of comput

ers, and users needn’t learn a new system when new hardware comes along. Perhaps more important, ven

dors that sell the UNIX system needn’t provide new software for each new machine; instead, their software

can be compiled and run without change on any hardware, which makes the system commercially attrac

tive. There is also an element of zealotry: users of the system tend to be enthusiastic and to expect it wher

ever they go; the students who used the UNIX system in university a few years ago are now in the job mar

ket and often demand it as a condition of employment.

But the UNIX system was popular long before it was even portable, let alone a commercial success.

The reasons for that are more interesting.

Except for the initial PDP7 version, the UNIX system was written for the DEC PDP11, a machine that

was (deservedly) very popular. PDP11’s were powerful enough to do real computing, but small enough to

be affordable by small organizations such as academic departments in universities.

The early UNIX system was smaller but more effective and technically more interesting than compet

ing systems on the same hardware. It provided a number of innovative applications of computer science,

showing the benefits to be obtained by a judicious blend of theory and practice. Examples include the

yacc parsergenerator, the diff file comparison program, and the pervasive use of regular expressions to

describe string patterns. These led in turn to new programming languages and interesting software for

applications like program development, document preparation and circuit design.

Since the system was modest in size, and since essentially everything was written in C, the software

was easy to modify, to customize for particular applications or merely to support a view of the world

 UNIX is a trademark of Bell Laboratories.

 2

different from the original. (This ease of change is also a weakness, of course, as evidenced by the plethora

of different versions of the system.)

Finally, the UNIX system provided a new style of computing, a new way of thinking of how to attack

a problem with a computer. This style was based on the use of tools: using programs separately or in com

bination to get a job done, rather than doing it by hand, by monolithic selfsufficient subsystems, or by

specialpurpose, onetime programs. This has been much discussed in the literature, so we don’t need to

repeat it here; see [1], for example.

The style of use and design of the tools on the system are closely related. The style is still evolving,

and is the subject of this essay: in particular, how the design and use of a program fit together, how the

tools fit into the environment, and how the style influences solutions to new problems. The focus of the

discussion is a single example, the program cat, which concatenates a set of files onto its standard output.

cat is a simple program, both in implementation and in use; it is essential to the UNIX system; and it is a

good illustration of the kinds of decisions that delight both supporters and critics of the system. (Often a

single property of the system will be taken as an asset or as a fault by different audiences; our audience is

programmers, because the UNIX environment is designed fundamentally for programming.) Even the

name cat is typical of UNIX program names: it is short, pronounceable, but not conventional English for

the job it does. (For an opposing viewpoint, see [2].) Most important, though, cat in its usages and varia

tions exemplifies UNIX program design style and how it has been interpreted by different communities.

11/3/71 CAT (I)

NAME c_a_t_ concatenate and print

SYNOPSIS c_a_t_ f_i_l_e_1_ ...

DESCRIPTION c_a_t_ reads each file in sequence and writes it on
the standard output stream. Thus:

c_a_t_ f_i_l_e_

is about the easiest way to print a file. Also:

c_a_t_ f_i_l_e_1_ f_i_l_e_2_ >f_i_l_e_3_

is about the easiest way to concatenate files.

If no input file is given c_a_t_ reads from the
standard input file.

FILES

SEE ALSO pr, cp

DIAGNOSTICS none; if a file cannot be found it is ignored.

BUGS

OWNER ken, dmr

Figure 1: Manual page for cat, UNIX 1st Edition, November, 1971

Figure 1 is the manual page for cat from the UNIX 1st Edition manual. Evidently, cat copies its input to

its output. The input is normally taken from a sequence of one or more files, but it can come from the stan

dard input. The output is the standard output. The manual suggests two uses, the general file copy:

 3

cat file1 file2 >file3

and printing a file on the terminal:

cat file

The general case is certainly what was intended in the design of the program. Output redirection (provided

by the > operator, implemented by the UNIX shell) makes cat a fine generalpurpose file concatenator and

a valuable adjunct for other programs, which can use cat to process filenames, as in:

cat file file2 ... | otherprogram

The fact that cat will also print on the terminal is a special case. Perhaps surprisingly, in practice it turns

out that the special case is the main use of the program.

The design of cat is typical of most UNIX programs: it implements one simple but general function

that can be used in many different applications (including many not envisioned by the original author).

Other commands are used for other functions. For example, there are separate commands for file system

tasks like renaming files, deleting them or telling how big they are. Other systems instead lump these into a

single ‘‘file system’’ command with an internal structure and command language of its own. (The PIP file

copy program found on operating systems like CP/M or RSX11 is an example.) That approach is not neces

sarily worse or better, but it is certainly against the UNIX philosophy. Unfortunately, such programs are

not completely alien to the UNIX system � some mailreading programs and text editors, for example, are

large selfcontained ‘‘subsystems’’ that provide their own complete environments and mesh poorly with the

rest of the system. Most such subsystems, however, are usually imported from or inspired by programs on

other operating systems with markedly different programming environments.

There are some significant advantages to the traditional UNIX system approach. The most important

is that the surrounding environment � the shell and the programs it can invoke � provides a uniform

access to system facilities. Filename argument patterns are expanded by the shell for all programs, without

prearrangement in each command. The same is true of input and output redirection. Pipes are a natural

outgrowth of redirection. Rather than decorate each command with options for all relevant pre and post

processing, each program expects as input, and produces as output, concise and headerfree textual data that

connects well with other programs to do the rest of the task at hand. It takes some programming discipline

to build a program that works well in this environment � primarily, to avoid the temptation to add features

that conflict with or duplicate services provided by other commands � but it’s well worthwhile.

Growth is easy when the functions are well separated. For example, the 7th Edition shell was aug

mented with a backquote operator that converts the output of one program into the arguments to another, as

in

cat ‘cat filelist‘

No changes were made in any other program when this operator was invented; because the backquote is

interpreted by the shell, all programs called by the shell acquire the feature transparently and uniformly. If

special characters like backquotes were instead interpreted, even by calling a standard subroutine, by each

program that found the feature appropriate, every program would require (at least) recompilation whenever

someone had a new idea. Not only would uniformity be hard to enforce, but experimentation would be

harder because of the effort of installing any changes.

The UNIX 7th Edition system introduced two changes in cat. First, files that could not be read,

either because of denied permissions or simple nonexistence, were reported rather than ignored. Second,

and less desirable, was the addition of a single optional argument u, which forced cat to unbuffer its out

put (the reasons for this option, which has disappeared again in the 8th Edition of the system, are technical

and irrelevant here.)

But the existence of one argument was enough to suggest more, and other versions of the system

 The use of cat to feed a single input file to a program has to some degree superseded the shell’s < operator, which illus

trates that generalpurpose constructs � like cat and pipes � are often more natural than convenient specialpurpose

ones.

 4

soon embellished cat with features. This list comes from cat on the Berkeley distribution of the UNIX

system:

s strip multiple blank lines to a single instance

n number the output lines

b number only the nonblank lines

v make nonprinting characters visible

ve mark ends of lines

vt change representation of tab

In System V, there are similar options and even a clash of naming: s instructs cat to be silent

about nonexistent files. But none of these options are appropriate additions to cat; the reasons get to the

heart of how UNIX programs are designed and why they work well together.

It’s easy to dispose of (Berkeley) s, n and b: all of these jobs are readily done with existing tools

like sed and awk. For example, to number lines, this awk invocation suffices:

awk ’{ print NR "\t" $0 }’ filenames

If linenumbering is needed often, this command can be packaged under a name like linenumber and put

in a convenient public place. Another possibility is to modify the pr command, whose job is to format text

such as program source for output on a line printer. Numbering lines is an appropriate feature in pr; in fact

UNIX System V pr has a n option to do so. There never was a need to modify cat; these options are

gratuitous tinkering.

But what about v? That prints nonprinting characters in a visible representation. Making strange

characters visible is a genuinely new function, for which no existing program is suitable. (‘‘sed n l’’,

the closest standard possibility, aborts when given very long input lines, which are more likely to occur in

files containing nonprinting characters.) So isn’t it appropriate to add the v option to cat to make

strange characters visible when a file is printed?

The answer is ‘‘No.’’ Such a modification confuses what cat’s job is � concatenating files � with

what it happens to do in a common special case � showing a file on the terminal. A UNIX program

should do one thing well, and leave unrelated tasks to other programs. cat’s job is to collect the data in

files. Programs that collect data shouldn’t change the data; cat therefore shouldn’t transform its input.

The preferred approach in this case is a separate program that deals with nonprintable characters.

We called ours vis (a suggestive, pronounceable, nonEnglish name) because its job is to make things vis

ible. As usual, the default is to do what most users will want � make strange characters visible � and as

necessary include options for variations on that theme. By making vis a separate program, related useful

functions are easy to provide. For example, the option s strips out (i.e., discards) strange characters,

which is handy for dealing with files from other operating systems. Other options control the treatment and

format of characters like tabs and backspaces that may or may not be considered strange in different situa

tions. Such options make sense in vis because its focus is entirely on the treatment of such characters. In

cat, they require an entire sublanguage within the v option, and thus get even further away from the

fundamental purpose of that program. Also, providing the function in a separate program makes conve

nient options such as s easier to invent, because it isolates the problem as well as the solution.

One possible objection to separate programs for each task is efficiency. For example, if we want

numbered lines and visible characters it is probably more efficient to run the one command

cat n v file

than the twoelement pipeline

linenumber file | vis

In practice, however, cat is usually used with no options, so it makes sense to have the common cases be

the efficient ones. The current research version of the cat command is actually about five times faster

than the Berkeley and System V versions because it can process data in large blocks instead of the byteat

time processing that might be required if an option is enabled. Also, and this is perhaps more important, it

is hard to imagine any of these examples being the bottleneck of a production program. Most of the real

 5

time is probably taken waiting for the user’s terminal to display the characters, or even for the user to read

them.

Separate programs are not always better than wider options; which is better depends on the problem.

Whenever one needs a way to perform a new function, one faces the choice of whether to add a new option

or write a new program (assuming that none of the programmable tools will do the job conveniently). The

guiding principle for making the choice should be that each program does one thing. Options are appropri

ately added to a program that already has the right functionality. If there is no such program, then a new

program is called for. In that case, the usual criteria for program design should be used: the program should

be as general as possible, its default behavior should match the most common usage, and it should cooper

ate with other programs.

Let’s look at these issues in the context of another problem, dealing with fast terminal lines. The first

versions of the UNIX system were written in the days when 150 baud was ‘‘fast,’’ and all terminals used

paper. Today, 9600 baud is typical, and hardcopy terminals are rare. How should we deal with the fact

that output from programs like cat scrolls off the top of the screen faster than one can read it?

There are two obvious approaches. One is to tell each program about the properties of terminals, so it

does the right thing (whether by option or automatically). The other is to write a command that handles ter

minals, and leave most programs untouched.

An example of the first approach is Berkeley’s version of the ls command, which lists the filenames

in a directory. Let us call it lsc to avoid confusion. The 7th Edition ls command lists filenames in a sin

gle column, so for a large directory, the list of filenames disappears off the top of the screen at great speed.

lsc prints in columns across the screen (which is assumed to be 80 columns wide), so there are typically

four to eight times as many names on each line, and thus the output usually fits on one screen. The option

1 can be used to get the old singlecolumn behavior.

Surprisingly, lsc operates differently if its output is a file or pipe:

lsc

produces output different from

lsc | cat

The reason is that lsc begins by examining whether or not its output is a terminal, and prints in columns

only if it is. By retaining singlecolumn output to files or pipes, lsc ensures compatibility with programs

like grep or wc that expect things to be printed one per line. This ad hoc adjustment of the output format

depending on the destination is not only distasteful, it is unique � no standard UNIX command has this

property.

A more insidious problem with lsc is that the columnation facility, which is actually a useful, gen

eral function, is built in and thus inaccessible to other programs that could use a similar compression. Pro

grams should not attempt special solutions to general problems. The automatic columnation in lsc is rem

iniscent of the ‘‘wild cards’’ found in some systems that provide filename pattern matching only for a par

ticular program. The experience with centralized processing of wild cards in the UNIX shell shows over

whelmingly how important it is to centralize the function where it can be used by all programs.

One solution for the ls problem is obvious � a separate program for columnation, so that columna

tion into say 5 columns is just

ls | 5

It is easy to build a firstdraft version with the multicolumn option of pr. The commands 2, 3, etc., are all

links to a single file:

pr $0 t l1 $*

$0 is the program name (2, 3, etc.), so $0 becomes n where n is the number of columns that pr is to

produce. The other options suppress the normal heading, set the page length to 1 line, and pass the argu

ments on to pr. This implementation is typical of the use of tools � it takes only a moment to write, and it

serves perfectly well for most applications. If a more general service is desired, such as automatically

selecting the number of columns for optimal compaction, a C program is probably required, but the one

 6

line implementation above satisfies the immediate need and provides a base for experimentation with the

design of a fancier program, should one become necessary.

Similar reasoning suggests a solution for the general problem of data flowing off screens (colum

nated or not): a separate program to take any input and print it a screen at a time. Such programs are by

now widely available, under names like pg and more. This solution affects no other programs, but can be

used with all of them. As usual, once the basic feature is right, the program can be enhanced with options

for specifying screen size, backing up, searching for patterns, and anything else that proves useful within

that basic job.

There is still a problem, of course. If the user forgets to pipe output into pg, the output that goes off

the top of the screen is gone. It would be desirable if the facilities of pg were always present without hav

ing to be requested explicitly.

There are related useful functions that are typically only available as part of a particular program, not

in a central service. One example is the history mechanism provided by some versions of the UNIX shell:

commands are remembered, so it’s possible to review and repeat them, perhaps with editing. But why

should this facility be restricted to the shell? (It’s not even general enough to pass input to programs called

by the shell; it applies to shell commands only.) Certainly other programs could profit as well; any interac

tive program could benefit from the ability to reexecute commands. More subtly, why should the facility

be restricted to program input? Pipes have shown that the output from one program is often useful as input

to another. With a little editing, the output of commands such as ls or make can be turned into commands

or data for other programs.

Another facility that could be usefully centralized is typified by the editor escape in some mail com

mands. It is possible to pick up part of a mail message, edit it, and then include it in a reply. But this is all

done by special facilities within the mail command and so its use is restricted.

Each such service is provided by a different program, which usually has its own syntax and seman

tics. This is in contrast to features such as pagination, which is always the same because it is only done by

one program. The editing of input and output text is more environmental than functional; it is more like the

shell’s expansion of filename metacharacters than automatic numbering of lines of text. But since the shell

does not see the characters sent as input to the programs, it cannot provide such editing. The emacs edi

tor3 provides a limited form of this capability, by processing all UNIX command input and output, but this

is expensive, clumsy, and subjects the users to the complexities and vagaries of yet another massive subsys

tem (which isn’t to criticize the inventiveness of the idea).

A potentially simpler solution is to let the terminal or terminal interface do the work, with controlled

scrolling, editing and retransmission of visible text, and review of what has gone before. We have used the

programmability of the Blit terminal4 � a programmable bitmap graphics display � to capitalize on this

possibility, to good effect.

The Blit uses a mouse to point to characters on the display, which can be edited, rearranged and

transmitted back to the UNIX system as though they had been typed on the keyboard. Because the terminal

is essentially simulating typed input, the programs are oblivious to how the text was created; all the features

discussed above are provided by the general editing capabilities of the terminal, with no changes to the

UNIX programs.

There are some obvious direct advantages to the Blit’s ability to process text under the user’s control.

Shell history is trivial: commands can be selected with the mouse, edited if desired, and retransmitted.

Since from the terminal’s viewpoint all text on the display is equivalent, history is limited neither to the

shell nor to command input. Because the Blit provides editing, most of the interactive features of programs

like mail are unnecessary; they are done easily, transparently and uniformly by the terminal.

The most interesting facet of this work, however, is the way it removes the need for interactive fea

tures in programs; instead, the Blit is the place where interaction is provided, much as the shell is the pro

gram that interprets filenamematching metacharacters. Unfortunately, of course, programming the termi

nal demands access to a part of the environment offlimits to most programmers, but the solution meshes

well with the environment and is appealing in its simplicity. If the terminal cannot be modified to provide

the capabilities, a userlevel program or perhaps the UNIX kernel itself could be modified fairly easily to do

roughly what the Blit does, with similar results.

 7

The key to problemsolving on the UNIX system is to identify the right primitive operations and to

put them at the right place. UNIX programs tend to solve general problems rather than special cases. In a

very loose sense, the programs are orthogonal, spanning the space of jobs to be done (although with a fair

amount of overlap for reasons of history, convenience or efficiency). Functions are placed where they will

do the most good: there shouldn’t be a pager in every program that produces output any more than there

should be filename pattern matching in every program that uses filenames.

One thing that UNIX does not need is more features. It is successful in part because it has a small

number of good ideas that work well together. Merely adding features does not make it easier for users to

do things � it just makes the manual thicker. The right solution in the right place is always more effective

than haphazard hacking.

1. B. W. Kernighan and Rob Pike, The UNIX Programming Environment, PrenticeHall (1984).

2. D. Norman, ‘‘The Truth about UNIX,’’ Datamation (November, 1981).

3. James Gosling, ‘‘UNIX Emacs,’’ CMU internal memorandum (August, 1982).

4. R. Pike, ‘‘The Blit: A Multiplexed Graphics Terminal,’’ Bell System Technical Journal (this issue,

1984).

